direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C22×Dic12, C12.57C24, C24.61C23, C23.67D12, Dic6.21C23, C6⋊1(C2×Q16), (C2×C6)⋊6Q16, C3⋊1(C22×Q16), (C2×C8).310D6, C4.47(C2×D12), (C2×C12).392D4, C12.292(C2×D4), (C2×C4).102D12, C8.52(C22×S3), C4.54(S3×C23), (C22×C8).12S3, C6.24(C22×D4), (C22×C24).16C2, (C22×C4).461D6, C2.26(C22×D12), C22.72(C2×D12), (C22×C6).147D4, (C2×C24).382C22, (C2×C12).788C23, (C22×Dic6).9C2, (C22×C12).527C22, (C2×Dic6).258C22, (C2×C6).180(C2×D4), (C2×C4).738(C22×S3), SmallGroup(192,1301)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C22×Dic12
G = < a,b,c,d | a2=b2=c24=1, d2=c12, ab=ba, ac=ca, ad=da, bc=cb, bd=db, dcd-1=c-1 >
Subgroups: 600 in 258 conjugacy classes, 127 normal (13 characteristic)
C1, C2, C2, C3, C4, C4, C4, C22, C6, C6, C8, C2×C4, C2×C4, Q8, C23, Dic3, C12, C12, C2×C6, C2×C8, Q16, C22×C4, C22×C4, C2×Q8, C24, Dic6, Dic6, C2×Dic3, C2×C12, C22×C6, C22×C8, C2×Q16, C22×Q8, Dic12, C2×C24, C2×Dic6, C2×Dic6, C22×Dic3, C22×C12, C22×Q16, C2×Dic12, C22×C24, C22×Dic6, C22×Dic12
Quotients: C1, C2, C22, S3, D4, C23, D6, Q16, C2×D4, C24, D12, C22×S3, C2×Q16, C22×D4, Dic12, C2×D12, S3×C23, C22×Q16, C2×Dic12, C22×D12, C22×Dic12
(1 111)(2 112)(3 113)(4 114)(5 115)(6 116)(7 117)(8 118)(9 119)(10 120)(11 97)(12 98)(13 99)(14 100)(15 101)(16 102)(17 103)(18 104)(19 105)(20 106)(21 107)(22 108)(23 109)(24 110)(25 64)(26 65)(27 66)(28 67)(29 68)(30 69)(31 70)(32 71)(33 72)(34 49)(35 50)(36 51)(37 52)(38 53)(39 54)(40 55)(41 56)(42 57)(43 58)(44 59)(45 60)(46 61)(47 62)(48 63)(73 191)(74 192)(75 169)(76 170)(77 171)(78 172)(79 173)(80 174)(81 175)(82 176)(83 177)(84 178)(85 179)(86 180)(87 181)(88 182)(89 183)(90 184)(91 185)(92 186)(93 187)(94 188)(95 189)(96 190)(121 166)(122 167)(123 168)(124 145)(125 146)(126 147)(127 148)(128 149)(129 150)(130 151)(131 152)(132 153)(133 154)(134 155)(135 156)(136 157)(137 158)(138 159)(139 160)(140 161)(141 162)(142 163)(143 164)(144 165)
(1 58)(2 59)(3 60)(4 61)(5 62)(6 63)(7 64)(8 65)(9 66)(10 67)(11 68)(12 69)(13 70)(14 71)(15 72)(16 49)(17 50)(18 51)(19 52)(20 53)(21 54)(22 55)(23 56)(24 57)(25 117)(26 118)(27 119)(28 120)(29 97)(30 98)(31 99)(32 100)(33 101)(34 102)(35 103)(36 104)(37 105)(38 106)(39 107)(40 108)(41 109)(42 110)(43 111)(44 112)(45 113)(46 114)(47 115)(48 116)(73 130)(74 131)(75 132)(76 133)(77 134)(78 135)(79 136)(80 137)(81 138)(82 139)(83 140)(84 141)(85 142)(86 143)(87 144)(88 121)(89 122)(90 123)(91 124)(92 125)(93 126)(94 127)(95 128)(96 129)(145 185)(146 186)(147 187)(148 188)(149 189)(150 190)(151 191)(152 192)(153 169)(154 170)(155 171)(156 172)(157 173)(158 174)(159 175)(160 176)(161 177)(162 178)(163 179)(164 180)(165 181)(166 182)(167 183)(168 184)
(1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24)(25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48)(49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72)(73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96)(97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120)(121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144)(145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168)(169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192)
(1 122 13 134)(2 121 14 133)(3 144 15 132)(4 143 16 131)(5 142 17 130)(6 141 18 129)(7 140 19 128)(8 139 20 127)(9 138 21 126)(10 137 22 125)(11 136 23 124)(12 135 24 123)(25 177 37 189)(26 176 38 188)(27 175 39 187)(28 174 40 186)(29 173 41 185)(30 172 42 184)(31 171 43 183)(32 170 44 182)(33 169 45 181)(34 192 46 180)(35 191 47 179)(36 190 48 178)(49 74 61 86)(50 73 62 85)(51 96 63 84)(52 95 64 83)(53 94 65 82)(54 93 66 81)(55 92 67 80)(56 91 68 79)(57 90 69 78)(58 89 70 77)(59 88 71 76)(60 87 72 75)(97 157 109 145)(98 156 110 168)(99 155 111 167)(100 154 112 166)(101 153 113 165)(102 152 114 164)(103 151 115 163)(104 150 116 162)(105 149 117 161)(106 148 118 160)(107 147 119 159)(108 146 120 158)
G:=sub<Sym(192)| (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,61)(47,62)(48,63)(73,191)(74,192)(75,169)(76,170)(77,171)(78,172)(79,173)(80,174)(81,175)(82,176)(83,177)(84,178)(85,179)(86,180)(87,181)(88,182)(89,183)(90,184)(91,185)(92,186)(93,187)(94,188)(95,189)(96,190)(121,166)(122,167)(123,168)(124,145)(125,146)(126,147)(127,148)(128,149)(129,150)(130,151)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,161)(141,162)(142,163)(143,164)(144,165), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,57)(25,117)(26,118)(27,119)(28,120)(29,97)(30,98)(31,99)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,136)(80,137)(81,138)(82,139)(83,140)(84,141)(85,142)(86,143)(87,144)(88,121)(89,122)(90,123)(91,124)(92,125)(93,126)(94,127)(95,128)(96,129)(145,185)(146,186)(147,187)(148,188)(149,189)(150,190)(151,191)(152,192)(153,169)(154,170)(155,171)(156,172)(157,173)(158,174)(159,175)(160,176)(161,177)(162,178)(163,179)(164,180)(165,181)(166,182)(167,183)(168,184), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,122,13,134)(2,121,14,133)(3,144,15,132)(4,143,16,131)(5,142,17,130)(6,141,18,129)(7,140,19,128)(8,139,20,127)(9,138,21,126)(10,137,22,125)(11,136,23,124)(12,135,24,123)(25,177,37,189)(26,176,38,188)(27,175,39,187)(28,174,40,186)(29,173,41,185)(30,172,42,184)(31,171,43,183)(32,170,44,182)(33,169,45,181)(34,192,46,180)(35,191,47,179)(36,190,48,178)(49,74,61,86)(50,73,62,85)(51,96,63,84)(52,95,64,83)(53,94,65,82)(54,93,66,81)(55,92,67,80)(56,91,68,79)(57,90,69,78)(58,89,70,77)(59,88,71,76)(60,87,72,75)(97,157,109,145)(98,156,110,168)(99,155,111,167)(100,154,112,166)(101,153,113,165)(102,152,114,164)(103,151,115,163)(104,150,116,162)(105,149,117,161)(106,148,118,160)(107,147,119,159)(108,146,120,158)>;
G:=Group( (1,111)(2,112)(3,113)(4,114)(5,115)(6,116)(7,117)(8,118)(9,119)(10,120)(11,97)(12,98)(13,99)(14,100)(15,101)(16,102)(17,103)(18,104)(19,105)(20,106)(21,107)(22,108)(23,109)(24,110)(25,64)(26,65)(27,66)(28,67)(29,68)(30,69)(31,70)(32,71)(33,72)(34,49)(35,50)(36,51)(37,52)(38,53)(39,54)(40,55)(41,56)(42,57)(43,58)(44,59)(45,60)(46,61)(47,62)(48,63)(73,191)(74,192)(75,169)(76,170)(77,171)(78,172)(79,173)(80,174)(81,175)(82,176)(83,177)(84,178)(85,179)(86,180)(87,181)(88,182)(89,183)(90,184)(91,185)(92,186)(93,187)(94,188)(95,189)(96,190)(121,166)(122,167)(123,168)(124,145)(125,146)(126,147)(127,148)(128,149)(129,150)(130,151)(131,152)(132,153)(133,154)(134,155)(135,156)(136,157)(137,158)(138,159)(139,160)(140,161)(141,162)(142,163)(143,164)(144,165), (1,58)(2,59)(3,60)(4,61)(5,62)(6,63)(7,64)(8,65)(9,66)(10,67)(11,68)(12,69)(13,70)(14,71)(15,72)(16,49)(17,50)(18,51)(19,52)(20,53)(21,54)(22,55)(23,56)(24,57)(25,117)(26,118)(27,119)(28,120)(29,97)(30,98)(31,99)(32,100)(33,101)(34,102)(35,103)(36,104)(37,105)(38,106)(39,107)(40,108)(41,109)(42,110)(43,111)(44,112)(45,113)(46,114)(47,115)(48,116)(73,130)(74,131)(75,132)(76,133)(77,134)(78,135)(79,136)(80,137)(81,138)(82,139)(83,140)(84,141)(85,142)(86,143)(87,144)(88,121)(89,122)(90,123)(91,124)(92,125)(93,126)(94,127)(95,128)(96,129)(145,185)(146,186)(147,187)(148,188)(149,189)(150,190)(151,191)(152,192)(153,169)(154,170)(155,171)(156,172)(157,173)(158,174)(159,175)(160,176)(161,177)(162,178)(163,179)(164,180)(165,181)(166,182)(167,183)(168,184), (1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24)(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48)(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72)(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96)(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120)(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144)(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168)(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192), (1,122,13,134)(2,121,14,133)(3,144,15,132)(4,143,16,131)(5,142,17,130)(6,141,18,129)(7,140,19,128)(8,139,20,127)(9,138,21,126)(10,137,22,125)(11,136,23,124)(12,135,24,123)(25,177,37,189)(26,176,38,188)(27,175,39,187)(28,174,40,186)(29,173,41,185)(30,172,42,184)(31,171,43,183)(32,170,44,182)(33,169,45,181)(34,192,46,180)(35,191,47,179)(36,190,48,178)(49,74,61,86)(50,73,62,85)(51,96,63,84)(52,95,64,83)(53,94,65,82)(54,93,66,81)(55,92,67,80)(56,91,68,79)(57,90,69,78)(58,89,70,77)(59,88,71,76)(60,87,72,75)(97,157,109,145)(98,156,110,168)(99,155,111,167)(100,154,112,166)(101,153,113,165)(102,152,114,164)(103,151,115,163)(104,150,116,162)(105,149,117,161)(106,148,118,160)(107,147,119,159)(108,146,120,158) );
G=PermutationGroup([[(1,111),(2,112),(3,113),(4,114),(5,115),(6,116),(7,117),(8,118),(9,119),(10,120),(11,97),(12,98),(13,99),(14,100),(15,101),(16,102),(17,103),(18,104),(19,105),(20,106),(21,107),(22,108),(23,109),(24,110),(25,64),(26,65),(27,66),(28,67),(29,68),(30,69),(31,70),(32,71),(33,72),(34,49),(35,50),(36,51),(37,52),(38,53),(39,54),(40,55),(41,56),(42,57),(43,58),(44,59),(45,60),(46,61),(47,62),(48,63),(73,191),(74,192),(75,169),(76,170),(77,171),(78,172),(79,173),(80,174),(81,175),(82,176),(83,177),(84,178),(85,179),(86,180),(87,181),(88,182),(89,183),(90,184),(91,185),(92,186),(93,187),(94,188),(95,189),(96,190),(121,166),(122,167),(123,168),(124,145),(125,146),(126,147),(127,148),(128,149),(129,150),(130,151),(131,152),(132,153),(133,154),(134,155),(135,156),(136,157),(137,158),(138,159),(139,160),(140,161),(141,162),(142,163),(143,164),(144,165)], [(1,58),(2,59),(3,60),(4,61),(5,62),(6,63),(7,64),(8,65),(9,66),(10,67),(11,68),(12,69),(13,70),(14,71),(15,72),(16,49),(17,50),(18,51),(19,52),(20,53),(21,54),(22,55),(23,56),(24,57),(25,117),(26,118),(27,119),(28,120),(29,97),(30,98),(31,99),(32,100),(33,101),(34,102),(35,103),(36,104),(37,105),(38,106),(39,107),(40,108),(41,109),(42,110),(43,111),(44,112),(45,113),(46,114),(47,115),(48,116),(73,130),(74,131),(75,132),(76,133),(77,134),(78,135),(79,136),(80,137),(81,138),(82,139),(83,140),(84,141),(85,142),(86,143),(87,144),(88,121),(89,122),(90,123),(91,124),(92,125),(93,126),(94,127),(95,128),(96,129),(145,185),(146,186),(147,187),(148,188),(149,189),(150,190),(151,191),(152,192),(153,169),(154,170),(155,171),(156,172),(157,173),(158,174),(159,175),(160,176),(161,177),(162,178),(163,179),(164,180),(165,181),(166,182),(167,183),(168,184)], [(1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24),(25,26,27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48),(49,50,51,52,53,54,55,56,57,58,59,60,61,62,63,64,65,66,67,68,69,70,71,72),(73,74,75,76,77,78,79,80,81,82,83,84,85,86,87,88,89,90,91,92,93,94,95,96),(97,98,99,100,101,102,103,104,105,106,107,108,109,110,111,112,113,114,115,116,117,118,119,120),(121,122,123,124,125,126,127,128,129,130,131,132,133,134,135,136,137,138,139,140,141,142,143,144),(145,146,147,148,149,150,151,152,153,154,155,156,157,158,159,160,161,162,163,164,165,166,167,168),(169,170,171,172,173,174,175,176,177,178,179,180,181,182,183,184,185,186,187,188,189,190,191,192)], [(1,122,13,134),(2,121,14,133),(3,144,15,132),(4,143,16,131),(5,142,17,130),(6,141,18,129),(7,140,19,128),(8,139,20,127),(9,138,21,126),(10,137,22,125),(11,136,23,124),(12,135,24,123),(25,177,37,189),(26,176,38,188),(27,175,39,187),(28,174,40,186),(29,173,41,185),(30,172,42,184),(31,171,43,183),(32,170,44,182),(33,169,45,181),(34,192,46,180),(35,191,47,179),(36,190,48,178),(49,74,61,86),(50,73,62,85),(51,96,63,84),(52,95,64,83),(53,94,65,82),(54,93,66,81),(55,92,67,80),(56,91,68,79),(57,90,69,78),(58,89,70,77),(59,88,71,76),(60,87,72,75),(97,157,109,145),(98,156,110,168),(99,155,111,167),(100,154,112,166),(101,153,113,165),(102,152,114,164),(103,151,115,163),(104,150,116,162),(105,149,117,161),(106,148,118,160),(107,147,119,159),(108,146,120,158)]])
60 conjugacy classes
class | 1 | 2A | ··· | 2G | 3 | 4A | 4B | 4C | 4D | 4E | ··· | 4L | 6A | ··· | 6G | 8A | ··· | 8H | 12A | ··· | 12H | 24A | ··· | 24P |
order | 1 | 2 | ··· | 2 | 3 | 4 | 4 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 8 | ··· | 8 | 12 | ··· | 12 | 24 | ··· | 24 |
size | 1 | 1 | ··· | 1 | 2 | 2 | 2 | 2 | 2 | 12 | ··· | 12 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 | 2 | ··· | 2 |
60 irreducible representations
dim | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 |
type | + | + | + | + | + | + | + | + | + | - | + | + | - |
image | C1 | C2 | C2 | C2 | S3 | D4 | D4 | D6 | D6 | Q16 | D12 | D12 | Dic12 |
kernel | C22×Dic12 | C2×Dic12 | C22×C24 | C22×Dic6 | C22×C8 | C2×C12 | C22×C6 | C2×C8 | C22×C4 | C2×C6 | C2×C4 | C23 | C22 |
# reps | 1 | 12 | 1 | 2 | 1 | 3 | 1 | 6 | 1 | 8 | 6 | 2 | 16 |
Matrix representation of C22×Dic12 ►in GL5(𝔽73)
1 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
72 | 0 | 0 | 0 | 0 |
0 | 72 | 0 | 0 | 0 |
0 | 0 | 72 | 0 | 0 |
0 | 0 | 0 | 72 | 0 |
0 | 0 | 0 | 0 | 72 |
72 | 0 | 0 | 0 | 0 |
0 | 16 | 57 | 0 | 0 |
0 | 16 | 16 | 0 | 0 |
0 | 0 | 0 | 7 | 7 |
0 | 0 | 0 | 66 | 14 |
1 | 0 | 0 | 0 | 0 |
0 | 67 | 6 | 0 | 0 |
0 | 6 | 6 | 0 | 0 |
0 | 0 | 0 | 54 | 48 |
0 | 0 | 0 | 29 | 19 |
G:=sub<GL(5,GF(73))| [1,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72,0,0,0,0,0,72],[72,0,0,0,0,0,16,16,0,0,0,57,16,0,0,0,0,0,7,66,0,0,0,7,14],[1,0,0,0,0,0,67,6,0,0,0,6,6,0,0,0,0,0,54,29,0,0,0,48,19] >;
C22×Dic12 in GAP, Magma, Sage, TeX
C_2^2\times {\rm Dic}_{12}
% in TeX
G:=Group("C2^2xDic12");
// GroupNames label
G:=SmallGroup(192,1301);
// by ID
G=gap.SmallGroup(192,1301);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,224,675,192,1684,102,6278]);
// Polycyclic
G:=Group<a,b,c,d|a^2=b^2=c^24=1,d^2=c^12,a*b=b*a,a*c=c*a,a*d=d*a,b*c=c*b,b*d=d*b,d*c*d^-1=c^-1>;
// generators/relations